Global demand to rise 3.5% annually through 2013

Global demand for chemicals used in petroleum refineries is projected to rise 3.5 percent annually to 18.2 million metric tons in 2013, valued at $21.6 billion. Gains will be led by strong increases in merchant hydrogen consumption, which is surging as refiners seek cost-effective options to meet their rising use of hydrogen for desulfurization and crude upgrading. For other refinery chemicals, global consumption will expand more slowly, although there will be healthy gains for catalysts used in hydrocracking and hydrotreating applications. Geographically, the most rapid growth rates for refinery chemical demand will be found in the Asia/Pacific and Africa/Mideast regions, although the large North American market will account for a substantial share of future volume gains.

Environmental regulations driving refinery chemical use

Around the world, oil refineries are subject to a myriad of environmental regulations aimed at reducing pollution from both petroleum products and the refineries themselves. The most significant of these regulations in terms of their impact on refinery operations are those mandating reductions in the sulfur content of refined petroleum products. To meet these reductions, refiners are expanding existing or constructing new hydrotreating units, which are projected to be among the fastest growing applications for refinery chemicals through 2013.

Crude oil upgrades support refinery chemical growth

A slowly growing share of global crude oil consumption is accounted for by heavier oils, which tend to contain higher levels of impurities and are generally more difficult and expensive to refine. Upgrading the long hydrocarbon chains found in these heavier oils for use in gasoline and distillate fuels requires significant refinery chemical use in hydrocracking, catalytic cracking and isomerization applications, and through 2013 the increased use of heavy crude oil will be a significant driver of refinery chemical demand.

Study coverage

This new Freedonia industry study, World Refinery Chemicals, is priced at $5700. The study provides an in-depth overview of the global refinery chemicals market, presenting historical demand data (1998, 2003 and 2008) plus forecasts for the years 2013 and 2018 by chemical type and application, along with regional trends. This information is framed in the context of the current and future operating environment for petroleum refineries, including future trends in refined petroleum product demand and existing government regulations. The study also considers market environment factors, evaluates company market share and profiles major suppliers of refinery chemicals.
Introduction

EXECUTIVE SUMMARY

1 Summary Table

MARKET ENVIRONMENT

General
World Population Outlook
World Economic Outlook
Recent Historical Trends
Macroeconomic Outlook
World Motor Vehicles in Use
World Crude Oil Consumption Outlook
Refinery Overview
Refinery Process Overview
Refining Capacity by Country
World Petroleum Refining Outlook
Environmental & Regulatory Issues
Chemical Pricing Trends

LIST OF TABLES & CHARTS:

1 World Population by Region
2 World Gross Domestic Product by Region
3 World Motor Vehicle Park by Region
4 World Crude Oil Consumption Outlook
5 Refinery Capacity by Country, 2005
6 World Refined Petroleum Product Production by Region

REFINERY CHEMICAL APPLICATIONS

General
Conversion Processes
Catalytic Cracking
Technology
Chemical Demand
Hydrocracking
Technology
Chemical Demand
Alkylation
Technology
Chemical Demand
Other Conversion Processes
Technology
Chemical Demand
Petroleum Treatment Processes
Hydrotreating
Technology
Chemical Demand
Other Treatment Processes
Technology
Chemical Demand
Water Treatment
Other Refinery Applications

LIST OF TABLES & CHARTS:

1 World Refinery Chemical Demand by Type & Region
2 World Conversion Chemical Demand
3 World Catalytic Cracking Chemical Demand by Type & Region
4 World Hydrocracking Chemical Demand by Type & Region
5 World Alkylation Chemical Demand by Type & Region
6 World Other Conversion Chemical Demand
7 World Petroleum Treatment Processes Chemical Demand
8 World Hydrotreating Chemical Demand by Type & Region
9 World Other Treatment Processes Chemical Demand
10 World Water Treatment Chemical Demand
11 World Other Refinery Applications Chemical Demand

REFINERY CHEMICAL PRODUCTS

General
Catalysts
Metal Catalysts
Zeolites
Other
Merchant Hydrogen
pH Adjusters
Corrosion Inhibitors
Other Refinery Chemicals

LIST OF TABLES & CHARTS:

1 World Refinery Chemical Demand by Product & Region
2 World Refinery Catalyst Demand by Type, Application & Region
3 World Metal Catalyst Demand by Type, Application & Region
4 World Zeolite Catalyst Demand by Application & Region
5 World Other Refinery Catalyst Demand
6 World Hydrogen Demand in Refining by Application & Region
7 World pH Adjuster Demand in Refining
8 World Corrosion Inhibitors Demand in Refining
9 World Other Refinery Chemicals Demand

NORTH AMERICA

General
Refinery Chemical Demand
United States
Canada
Mexico

LIST OF TABLES & CHARTS:

1 World Refinery Chemical Demand by Application & Region
2 North America: Key Indicators for Refinery Chemical Demand
3 North America: Refinery Chemical Demand by Application & Product
4 World North America Refinery Chemical Demand, 2008
5-6 United States
7-8 Mexico

WESTERN EUROPE

General
Refinery Chemical Demand
Germany
Italy
France
United Kingdom
Spain

LIST OF TABLES & CHARTS:

1 Latin America: Key Indicators for Refinery Chemical Demand
2 Latin America: Refinery Chemical Demand by Application & Product
3-4 Brazil
5-6 Venezuela

ASIA/PACIFIC

General
Refinery Chemical Demand
China
Japan
India
South Korea
Singapore
Taiwan
Other Asia/Pacific

LIST OF TABLES & CHARTS:

1 Asia/Pacific: Key Indicators for Refinery Chemical Demand
2 Asia/Pacific: Refinery Chemical Demand by Application & Product
3-4 China
5-6 Japan
7-8 India
9-10 South Korea
11-12 Singapore
13-14 Taiwan
15-16 Other Asia/Pacific

OTHER REGIONS

Latin America
General
Refinery Chemical Demand
Brazil
Venezuela
Other Latin America
Eastern Europe
General
Refinery Chemical Demand
Russia
Other Eastern Europe
Africa/Mideast
General
Refinery Chemical Demand
Saudi Arabia
Iran
Other Africa/Mideast

LIST OF TABLES & CHARTS:

1 Latin America: Key Indicators for Refinery Chemical Demand
2 Latin America: Refinery Chemical Demand by Application & Product
3-4 Brazil
5-6 Venezuela
INDUSTRY STRUCTURE

General
Market Share
Competitive Strategies
Mergers & Acquisitions
Cooperative Agreements
Research & Development

LIST OF TABLES & CHARTS:

<table>
<thead>
<tr>
<th>List of Tables & Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 World Refinery Chemical Sales by Company, 2008</td>
</tr>
<tr>
<td>2 World Refinery Chemical Market Share, 2008</td>
</tr>
<tr>
<td>3 World Refinery Chemical by Application & Product (000 metric tons)</td>
</tr>
<tr>
<td>4 EAST Refinery Chemical Demand by Application & Product (000 metric tons)</td>
</tr>
<tr>
<td>5 World Refinery Chemicals Corrosion Inhibitors, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>6 World Refinery Chemicals pH Adjusters, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>7 World Refinery Chemicals Merchant Hydrogen, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>8 World Refinery Chemicals Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>9 World Refinery Chemicals By Product: Other Refinery Applications, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>10 World Refinery Chemicals By Application: Water Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>11 World Refinery Chemicals By Application: Petroleum Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>12 World Refinery Chemicals By Application: Corrosion Inhibitors, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>13 World Refinery Chemicals By Application: pH Adjusters, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>14 World Refinery Chemicals By Application: Merchant Hydrogen, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>15 World Refinery Chemicals By Application: Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>16 World Refinery Chemicals by Product, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>17 World Refinery Chemicals Petrochemicals, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>18 World Refinery Chemicals Other Chemicals, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>19 World Refinery Chemicals Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>20 World Refinery Chemicals by Application: Refinery Chemical Demand, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>21 World Refinery Chemicals By Application: Other Refinery Applications, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>22 World Refinery Chemicals By Product: Water Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>23 World Refinery Chemicals By Product: Petroleum Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>24 World Refinery Chemicals By Product: Corrosion Inhibitors, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>25 World Refinery Chemicals By Product: pH Adjusters, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>26 World Refinery Chemicals By Product: Merchant Hydrogen, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>27 World Refinery Chemicals By Product: Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>28 World Refinery Chemicals By Product: Other Refinery Applications, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>29 World Refinery Chemicals By Application: Water Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>30 World Refinery Chemicals By Application: Petroleum Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>31 World Refinery Chemicals By Application: Corrosion Inhibitors, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>32 World Refinery Chemicals By Application: pH Adjusters, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>33 World Refinery Chemicals By Application: Merchant Hydrogen, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>34 World Refinery Chemicals By Application: Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>35 World Refinery Chemicals By Application: Other Refinery Applications, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>36 World Refinery Chemicals Petrochemicals, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>37 World Refinery Chemicals Other Chemicals, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>38 World Refinery Chemicals Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>39 World Refinery Chemicals by Application: Refinery Chemical Demand, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>40 World Refinery Chemicals By Application: Other Refinery Applications, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>41 World Refinery Chemicals By Product: Water Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>42 World Refinery Chemicals By Product: Petroleum Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>43 World Refinery Chemicals By Product: Corrosion Inhibitors, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>44 World Refinery Chemicals By Product: pH Adjusters, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>45 World Refinery Chemicals By Product: Merchant Hydrogen, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>46 World Refinery Chemicals By Product: Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>47 World Refinery Chemicals By Application: Water Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>48 World Refinery Chemicals By Application: Petroleum Treatment, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>49 World Refinery Chemicals By Application: Corrosion Inhibitors, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>50 World Refinery Chemicals By Application: pH Adjusters, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>51 World Refinery Chemicals By Application: Merchant Hydrogen, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>52 World Refinery Chemicals By Application: Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>53 World Refinery Chemicals By Application: Other Refinery Applications, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>54 World Refinery Chemicals Petrochemicals, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>55 World Refinery Chemicals Other Chemicals, 2008-2018 (000 metric tons)</td>
</tr>
<tr>
<td>56 World Refinery Chemicals Catalysts, 2008-2018 (000 metric tons)</td>
</tr>
</tbody>
</table>

REFINERY CHEMICAL PRODUCTS

Metal Catalysts

Demand for metal catalysts used in refinery applications is projected to reach nearly $2.2 billion in 2013. In value terms, growth is expected to increase nearly 9 percent annually to $2.2 billion in the next five years. historically, nearly all of the demand in this market has come from hydrotreating processes, but value the expensive precious metals used in hydrotreating. While demand for these catalysts remains strong, the effects of recent price changes in metal commodities pricing, particularly for precious metal catalysts, although refiner efforts to limit catalyst usage or substitute base metals for precious metal in high price environments can dampen the effects of these price changes.

North America is the largest regional market for metal catalysts used in petroleum refining, although stronger gains are expected in the Asia/Pacific region (excluding the more mature Japanese market), Latin America and the Africa/Mideast region. Worldwide, efforts to reduce sulfur content levels in refined petroleum products will be the primary driver of metal catalyst demand, although a global trend toward the use of higher-sulfur crude oil will be an important contributing factor. Future demand growth will also be supported by regulations limiting the sulfur content of fuels burned in oceangoing vessels.

Hydrotreating is the largest application for metal catalysts in petroleum refining, accounting for over 90 percent of total global volume demand in 2008. In hydrotreating, a fixed bed consisting of an alumina base with molybdenum and base metal oxides is used to break apart hydrocarbon chains and displace sulfur molecules. Much of the future gains in metal catalyst demand are expected to come from hydrotreating processes, which are expanding strongly as refiners look for ways to remove impurities from their fuels to meet tightening standards. However, faster gains are expected for metal catalysts used in hydrocracking applications, which is one of the fastest growing conversion applications found in

Freedonia’s methods involve:

- Establishing consistent economic and market forecasts
- Using input/output ratios, flow charts and other economic methods to quantify data
- Employing in-house analysts who meet stringent quality standards
- Interviewing key industry participants, experts and end users
- Researching a proprietary database that includes trade publications, government reports and corporate literature
Other Titles from The Freedonia Group

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oilfield Chemicals</td>
<td>$4800</td>
</tr>
<tr>
<td>Soy Chemicals</td>
<td>$4700</td>
</tr>
<tr>
<td>World Oilfield Chemicals</td>
<td>$4600</td>
</tr>
<tr>
<td>Well Stimulation Materials</td>
<td>$5700</td>
</tr>
<tr>
<td>World Refinery Chemicals</td>
<td>$5700</td>
</tr>
<tr>
<td>World Oilfield Chemicals</td>
<td>$5700</td>
</tr>
<tr>
<td>Well Stimulation Materials</td>
<td>$5700</td>
</tr>
<tr>
<td>World Refinery Chemicals</td>
<td>$5700</td>
</tr>
<tr>
<td>World Oilfield Chemicals</td>
<td>$5700</td>
</tr>
</tbody>
</table>

Oilfield Chemicals

US oilfield chemical demand will grow 4.4% annually through 2013. The market will decline in the short term then rebound by the end of the forecast period, based mainly on swings in oil and gas prices. Stimulation chemicals and EOR products will be the fastest growing segments. Acids and polymers used in stimulation fluids will see growth. This study analyzes the US oilfield chemical industry, with forecasts for 2013 and 2018 by product and raw material. It also evaluates company market share and profiles industry players.

Soy Chemicals

US soy chemical demand will grow 7.8% annually through 2013, driven by the continued penetration of biodiesel, and by the adoption of alternatives to traditional, petrochemical-based materials in manufacturing. Soy oil derivatives such as methyl soyate, polyols, soy-based foamed plastics, waxes and fatty acids hold particularly good prospects. This study analyzes the $1.9 billion US soy chemical industry, with forecasts for 2013 and 2018 by product and market. It also evaluates market share and profiles industry players.

World Well Stimulation Materials

Global well stimulation material demand will grow at a double-digit annual rate through 2012. Efforts to maintain productivity in maturing oil and gas fields and to increase production in more difficult environments will drive gains. The US, Russia, Canada and China will continue to dominate demand. This study analyzes the $4.7 billion world well stimulation material industry, with forecasts for 2012 and 2017 by type and for four world regions and four key countries. It also evaluates market share and profiles industry competitors.

World Oilfield Chemicals

Global demand for oilfield chemicals will grow 5.7% annually through 2012. Gains will be driven by continuing growth in oil and gas production, and high levels of rotary drilling rigs in use and of wells drilled. North America will remain the dominant market while Latin America and the Asia/Pacific region will grow the fastest. This study analyzes the $15.2 billion world oilfield chemical industry, with forecasts for 2012 and 2017 by type, world region and for 27 countries. It also details market share and profiles industry players.

World Refinery Chemicals

Reports can be purchased at our website www.freedoniagroup.com and through major commercial online hosts.