The demand landscape for high performance composites will shift yet again over the forecast period. High performance composites are becoming more widespread and attracting new companies, thus becoming less expensive.

Market penetration

High performance composites have continued to penetrate more and more markets, starting off years ago in niche, high-priced outlets such as aerospace and luxury sports cars. Now they are used widely in technologies that are transforming the way people live their lives, such as being included in wind turbines and gas tanks in alternative fuel-powered motor vehicles. In addition, government and industry are partnering to expedite technological advancement and affordability.

Wind energy & pressure vessels support gains

Though the large aerospace market propelled gains in the past, it will be the wind energy and pressure vessel markets that support gains into the forecast period. Without any major new aircraft, demand for high performance composites in the aerospace market will decelerate, though it will be supported by the ramp-up in deliveries of F-35 fighter jets.

The wind market will be supported by a production credit allowing producers and investors to make longer-term plans and invest with less uncertainty about market subsidies, and pressure vessels will find increased usage as lightweight storage containers for motor vehicles employing alternative fuel systems.

Partnerships driving costs down for motor vehicle composites

Widespread adoption of high performance composites in the motor vehicle segment -- long a primary goal of the carbon fiber industry -- has still not been accomplished. High performance composites are still more expensive and too slow to process to be utilized widely in the mass market models that are manufactured on today's assembly lines. However, government and industry are working together to bring costs down substantially, in part to meet aggressive future fuel efficiency standards.

Study coverage

This study details the US high performance composites market. It presents historical demand data for 2005, 2010 and 2015, plus forecasts for 2020 and 2025 by fiber type (carbon fiber, s-glass, aramid, other), market (aerospace, automotive and industrial, energy, defense and safety, consumer, construction, other) and resin (epoxy, thermoplastic, polyester, phenolic resin, other). The study also considers market environment factors, assesses the industry structure and evaluates company market share.
CONTENTS SUMMARY

Executive Summary

Market Environment

Fibers
Fiber Materials
Carbon Fiber
Materials
Producers
Composites
S-Glass
Materials
Producers
Composites
Aramid
Materials
Producers
Composites
Other Fibers
Materials
Producers
Composites

Markets
Aerospace
Aerospace Industry Outlook
High Performance Composite Demand
Commercial Airliners
Military Aircraft
Other Aerospace
Automotive & Industrial
Motor Vehicles
Motor Vehicle Industry Outlook
High Performance Composite Demand
Pressure Vessels
Industrial
Defense & Safety
Government/Defense Spending Outlook
High Performance Composite Demand
Energy
Wind Turbines
Wind Energy Industry Outlook
High Performance Composite Demand
Oil & Gas
Oil & Gas Industry Outlook
High Performance Composite Demand
Consumer
Sporting Goods
Sporting Goods Industry Outlook
High Performance Composite Demand
Marine
Recreational Boating Industry Outlook
High Performance Composite Demand
Medical
Medical Products Industry Outlook
High Performance Composite Demand
Construction
Construction
Construction Industry Overview
High Performance Composite Demand

Resins
Epoxy

Thermoplastics
Polyester
Phenolic Resins
Other Resins

Industry Structure
Industry Composition
Market Share
Acquisitions & Divestitures
Marketing & Distribution
Research & Development
Competitive Strategies
Cooperative Agreements

TABLES & CHARTS

Executive Summary
1 Summary Table

Fibers
1 Performance Composite Demand by Fiber
Cht High Performance Composite Demand by Fiber, 2015
Cht Fiber Demand in High Performance Composites, 2015: Volume Vs. Value
2 Fiber Demand in High Performance Composites
3 Carbon Fiber Demand in High Performance Composites by Size & Process
4 Carbon Fiber Capacity by Company, 2015
5 Carbon Fiber High Performance Composite Demand by Market
6 S-Glass Fiber Demand in High Performance Composites
7 S-Glass Fiber High Performance Composite Demand by Market
8 Aramid Fiber Demand in High Performance Composites
9 Aramid Fiber High Performance Composite Demand by Market
10 Other Fiber Demand in High Performance Composites
11 Other Fiber High Performance Composite Demand by Market

Markets
1 High Performance Composite Demand by Resin
Cht High Performance Composite Demand by Resin, 2015
2 Epoxy High Performance Composite Demand by Market
3 Thermoplastic High Performance Composite Demand by Market
4 Polyester High Performance Composite Demand by Market
5 Phenolic Resin High Performance Composite Demand by Market
6 Other Resin Demand in High Performance Composites by Market

Industry Structure
1 US High Performance Composite Sales by Company, 2015
Cht US High Performance Composite Market Share, 2015
2 Selected Acquisitions & Divestitures
3 Selected Cooperative Agreements
MARKETS

High Performance Composite Demand -- Demand for high performance composites in the wind energy market will rise 11 percent per year to $483 million in 2020. Advances will be fueled by strong growth in wind turbine production, as the recent extension of the production tax credit stabilizes the market and producers move to harness wind energy from both low-wind areas like the central US and the turbulent winds in coastal areas. The bulk of market gains will be a result of increased penetration of high performance composites on a per pound basis, as rising demand for larger-sized wind turbine blades will require the use of stronger and more lightweight materials. Nonetheless, carbon fiber and other advanced composites will continue to account for only a small portion of the reinforced plastics used in wind turbines due to their much higher cost compared to conventional composites, and will likely be specified only for the most demanding applications.

High performance composite demand in the wind energy market rose tremendously during the 2000s, from only $8 million in 2005 to $286 million in 2015. However, this belies the tumultuous nature of the market during this decade, as wind energy installations waxed and waned from year to year depending mostly on the level of federal subsidies available. Because subsidy funds were not always renewed before the expiration of the previous subsidy, there were often large gaps in funding. As a result, wind energy installations rose sixfold in 2005 more than doubled in 2007, decreased by over 40 percent in 2010, declined by over 90 percent in 2013, before bouncing back to nearly $120 million in 2014 and more than doubling in 2015. The extension of the production tax credits at the end of 2015 is seen as a major industry event that will eliminate the volatility of demand present in the market over the past several years, at least until the end of the decade. State renewable energy standards -- some of which are met through wind capacity -- should provide some degree of insulation to the market.

TABLE IV-3

<table>
<thead>
<tr>
<th>Item</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Equipment Shipments (bil $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ HPC/000S aerospace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace HPC Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Sector:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Airliners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military Aircraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Aerospace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Fiber:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Glass Fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aramid Fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Resin:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermoplastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenolics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace HPC Demand (mil lb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: The Freedonia Group

TABLE III-3

<table>
<thead>
<tr>
<th>Item</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Demand in HPCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Fiber Demand in HPCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Size:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Tow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Tow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Process:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch-based & Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Fiber Demand in HPCs (mil $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Fiber HPC Demand (mil $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: The Freedonia Group

This study can help you:

- Determine your market & sales potential
- Learn more about industry competitors
- Assess new products & technologies
- Identify firms to merge with or acquire
- Complement your research & planning
- Gather data for presentations
- Confirm your own internal data
- Make better business decisions

For complete details on any study visit www.freedoniagroup.com
High Performance Composites
US Industry Study with Forecasts for 2020 & 2025
Study #3438
August 2016
$4900

Related Studies

World Thermoplastic Elastomers

World thermoplastic elastomer (TPE) demand will grow 5.2 percent annually to 6.7 million metric tons in 2019. Styrenic block copolymers will remain the largest segment, while thermoplastic Vulcanizates and polyolefin elastomers will grow the fastest. China will remain the largest and fastest growing market. This study analyzes the 5.2 million metric ton world TPE industry, with forecasts for 2019 and 2024 by market and product for six world regions and 16 major countries. The study also evaluates company market share and profiles industry players.

#3326. November 2015 $6500

Custom Thermoplastic Compounding

US demand for custom compounded thermoplastics will rise 3.2 percent annually to 10.6 billion pounds in 2019, valued at nearly $19 billion. The construction market will grow the fastest, nearly twice the pace of the next fastest growing market, wire and cable. Compounded thermoplastic PVC will continue to offer the best growth opportunities. This study analyzes the 9.1 billion pound US custom compounded thermoplastic industry, with forecasts for 2019 and 2024 by resin and market. The study also evaluates company market share and profiles industry players.

#3336. October 2015 $5300

Electric Motors

US electric motor demand will rise 5.4 percent per year through 2018 to $16.2 billion. Growth in the dominant AC motors segment will outpace DC types. The motor vehicle market will grow the fastest and remain the largest category, followed by the heating/cooling and machinery markets. IHP electric motors will outpace FHP types in both value and volume terms. This study analyzes the $12.5 billion US electric motor industry, with forecasts for 2018 and 2023 by type, power rating, and market. The study also evaluates company market share and profiles industry players.

#3238. December 2014 $5200

Wind Turbine Systems

US demand for wind turbine systems is forecast to reach $18.9 billion in 2018, a nearly ninefold increase over severely depressed 2013 levels. The market for wind turbines tends to be highly volatile due to its reliance on government incentives. Feed-in tariff payments and various grants from the Department of Energy will drive gains going forward. This study analyzes the $2.1 billion US wind turbine system industry, with forecasts for 2018 and 2023 by type, component, application and US region. The study also evaluates company market share and profiles industry players.

#3139. March 2014 $5100

Freedonia’s methods

• Establishing consistent economic & market forecasts
• Using input/output ratios, flow charts & other economic methods to quantify data
• Employing in-house analysts who meet stringent quality standards
• Interviewing key industry participants, experts & end users
• Researching a proprietary database that includes trade publications, government reports & corporate literature

About The Freedonia Group

The Freedonia Group is a leading international industry market research company that provides its clients with information and analysis needed to make informed strategic decisions for their businesses. Studies help clients identify business opportunities, develop strategies, make investment decisions and evaluate opportunities and threats. Freedonia research is designed to deliver unbiased views and reliable outlooks to assist clients in making the right decisions. Freedonia capitalizes on the resources of its proprietary in-house research team of experienced economists, professional analysts, industry researchers and editorial groups. Freedonia covers a diverse group of industries throughout the United States and other world markets. Industries analyzed by Freedonia include:

Automotive & Transport • Chemicals • Construction & Building Products • Consumer Goods • Energy & Petroleum • Industrial Components • Healthcare & Life Sciences • Machinery & Equipment • Metals, Minerals & Glass • Packaging • Plastics & Other Polymers • Security • Services • Textiles & Nonwovens • Water Treatment

The Freedonia Group is a division of MarketResearch.com

About MarketResearch.com

With offices in London, New York City, and Washington D.C., MarketResearch.com is the leading provider of global market intelligence products and services. With research reports from more than 720 top consulting and advisory firms, MarketResearch.com offers instant online access to the world's most extensive database of expert insights on industries, companies, products, and trends.

Contact Freedonia

1.800.927.5900 (US & Canada)
+1 440.684.9600 (Int'l)
email: info@freedoniagroup.com
website: freedoniagroup.com

Click here to purchase study online